該環(huán)保設備主要由驅(qū)動機構、機架、傳動機構、齒耙鏈牽引機構、撒渣機構、電氣控制等構成。由過水量、高度、固液分離總量和所分離的形狀、顆粒大小來選擇柵隙??筛鶕?jù)用戶需要選用材質(zhì)為ABS工程塑料、尼龍、不銹鋼的耙齒;主體框架有不銹鋼材質(zhì)和碳鋼防腐兩種。
(1) 格柵本體為整體式結(jié)構,在平臺上組裝、調(diào)試,空機試運行8小時方可出廠,確保組裝,也可簡化現(xiàn)場安裝工作量。
(6)本機設電器過載保護裝置,當機械發(fā)生故障或超負荷時會自動停機并發(fā)出,該靈敏可靠。
(3) 鏈條采用的寬鏈板不銹鋼鏈條,鏈條的系數(shù)不小于6,并設有鏈輪張緊調(diào)節(jié)裝置。在鏈槽中運轉(zhuǎn)時,不需其他阻渣裝置,即可有效防止柵渣纏入鏈槽,避免卡阻現(xiàn)象。
(5) 除污耙齒采用兩種形式,一種為長耙,另一種為短耙。長耙撈渣量大,短耙撈耙干凈*。
(2) 本機在主柵條前加上一道活動的副柵,活動副柵的間距與主柵條*,活動副柵的柵渣由長耙齒撈取,有效防止污水中的柵渣從柵條底部串過和底部的污物的積滯。
1、主要結(jié)構
格柵機為根本,以完善的售后服務體系為保障作為不懈追求的目標,永做環(huán)保事業(yè)道路上的先鋒兵。為造福一個白云、藍天、綠色、環(huán)保的盡一份力量!
機械格柵(格柵除污機)是一種可以連續(xù)自動流體中各種形狀的雜物,以固液分離為目的裝置,它可以作為一種設備廣泛地應用于城市污水處理、自來水行業(yè)、電廠進水口,同時也可以作為紡織、食品加工、造紙、皮革等行業(yè)生產(chǎn)工藝中*的設備,回轉(zhuǎn)式機械格柵又稱格柵除污機。
GDGS型機械格柵除污機(攔污機)是一種可以連續(xù)自動攔截并流體中各種形狀雜物的水處理設備,是以固液分離為目的裝置,廣泛地應用于城市污水處理。自來水行業(yè)、電廠進水口,同時也可以作為各行業(yè)廢水處理工藝中的前級篩分設備。該機械格柵產(chǎn)品已于1996和1999年兩次通過了環(huán)??偩值漠a(chǎn)品認定。
(4) 傳動機構安裝于機架頂部,采用擺線針輪減速機,設過扭矩保護裝置(剪切銷),有效防止因超負荷對電機減速機造成損傷。并配置防護罩,拆裝方便。
宜賓興文不銹鋼閘門 該機有柵齒、柵齒軸、鏈板等組成柵網(wǎng),以替代格柵的柵條。柵網(wǎng)在機架內(nèi)作回轉(zhuǎn)運動,從而將污水中的懸浮物攔截并不斷分離水中的懸浮物,因而工作效率高、運行平穩(wěn)、格柵前后水位差小,并且不易堵塞。該機適合于作粗細格柵使用。柵網(wǎng)中的柵齒可用工程塑料或不銹鋼兩種材料制造,柵齒軸和鏈板等由不銹鋼制造,大大了格柵整體的耐腐蝕性能。較小間隙的格柵一般宜用不銹鋼柵齒。設備運行使耙齒把截留在柵面上的雜物自下而上帶至出渣口,當耙齒自上向下轉(zhuǎn)向運動時,雜物依靠重力自行脫落,從卸料落入輸送機或小車內(nèi),然后外運或作進一步的處理。
宜賓興文不銹鋼閘門工程樁況 宋隆水閘位于高要市金渡鎮(zhèn)東5 kni處的聯(lián)安圍內(nèi),為宋隆河出口,兼有防洪和排澇的雙重作用,圍內(nèi)集水面積417.28 bl尹。捍衛(wèi)耕地18 666.7hm2,人口28萬,是聯(lián)安圍內(nèi)的一座中型水閘。水閘建于1923年,原設防低,經(jīng)過了70多年的運行,工程已日趨老化,設備殘缺,閘門嚴重銹蝕,雖前后8次,仍難以工程運行要求。為確保工程,因此,對宋隆水閘按100年一遇的防洪進行除險加固,在原宋隆水閘出口西江側(cè)新建一座涵閘,新水閘包括涵祠、鋼閘門、啟閉機室3部分,腸洞截面尺寸為7mxgm(寬x高)。水閘縱剖面見圖1。閘門為防洪工作門.當西江水位上漲,為防止洪水倒灌人圍,則關閉閘門,當宋隆河水自西江時,則開啟閘門。2問.的提出 1995年完成的(宋隆水閘除險加固工程初步設計說明書),鋼閘門為平面定輪閘門,粵水電管字【1995]66號文(關于宋隆水閘除險加固工程初步設計的批復)對閘門設計的審批意見為引言在水利水電工程項目中,弧形閘門是常見的門型之一,相對于我國使用較多的雙支臂弧形閘門來說,三支臂弧形閘門擁有更多的優(yōu)點:它能使主梁的高度;使門葉上的懸臂段部分;門葉剛度且有利于抗震;另外,三支臂弧形閘門的門葉重心更靠近支鉸中心,有利于啟門力。其缺點是設計,制造較為復雜。就目前來說,在三支臂弧形閘門的結(jié)構設計方面還沒有較為成熟的。因此,若能就三支臂弧形閘門的結(jié)構設計提出一套較為完善的,就能擴大其在水利水電工程項目上的應用,從而發(fā)揮其綜合效益。弧形閘門在結(jié)構布置上有主橫梁式和主縱梁式,梁系的連接又有同層布置和疊層布置等。在我國相關規(guī)范手冊上明確指出疊層布置的弧形閘門,其梁系連接高度較大,整體剛度較同層布置的差;主縱梁式的弧形閘門,其分縫的拼接比較困難,制造加工要求較高,因此常用的弧形閘門結(jié)構型式為主橫梁式同層布置。文章將主要對此種型式的弧形閘門的設計進行分析和研究。2主橫梁框架結(jié)構的計算主橫梁框架結(jié)構水工弧形鋼閘門由于結(jié)構輕巧,操作方便,了廣泛的應用。但同時也因為剛度、阻尼小,容易振動?;⌒武撻l門在側(cè)止水漏水或失效和下游淹沒出流的小開度組合情況下,將發(fā)生強烈的自激振動。對這種自激振動采用水力學條件和結(jié)構并不能地閘門的強烈振動,而且這種只能在閘門建造前應用。智能材料的發(fā)展和振動控制技術的運用,為解決閘門的強烈自激振動問題提供了可能和新的途徑,特別是對已建閘門,意義更大。本文主要致力于尋求一種能進一步解決閘門自激振動問題的有效控制裝置和控制策略。本文以某水利樞紐的導流底孔弧形鋼閘門為研究背景,根據(jù)簡化三維模型和模擬的時程荷載,對MR智能阻尼器用于弧形閘門結(jié)構的流激振動反應減振控制進行了多種智能半控制研究。本文首先基于三維空間有限元模型的動力分析建立了弧形閘門結(jié)構動力等效的三維多度集中簡化模型,并利用簡化模型進行了結(jié)構的動力特性和振動反應分析。兩種模型的動力特性和振動反應比較表明,弧形閘門的減振河南黃河懸河段穿堤引黃涵閘主要有花園口、趙口、馬渡閘、三瀏寨、黑崗口、柳園口、三義寨等。這些涵閘大都始建于6 0年代末和 70年代初 ,為多孔涵洞式水閘。較小的有柳園口引黃閘 ,設計引水流量為 40m3/s ;大的如趙口引黃閘 ,流量為2 10m3/s。涵閘孔口高度多為 2 .5m左右 ,孔口寬度為 2~ 3m ,采用平板木質(zhì)閘門 ,通過螺桿式啟閉機控制水量。為了適應黃河防汛的需要 ,后來分別對原工程進行了改建 ,有的將洞身向下游接長 ,有的將原木制閘門改為鋼筋混凝土閘門 ,有的重建消能設施和下游連接建筑物。改建后閘門運行基本相同。閘門改建工程投入運用以后 ,閘門運行在閉門時開始振動。其現(xiàn)象是絲杠呈反向緩緩上升 ,同時帶動整個啟閉機機殼、機座的微小上移 ,繼而閘門、洞體發(fā)出巨大響聲 ,其噪音值達 10 5dB左右 ,使整個啟閉機房也強烈振動。當振動發(fā)生后 ,閘門繼續(xù)平穩(wěn)下落 ,接著再次振動。*以來引起了啟閉機座和機殼裂弧形鋼閘門是水利水電工程樞紐的調(diào)節(jié)結(jié)構和咽喉,隨著高壩大庫建設的發(fā)展,弧形鋼閘門向著高水頭方向發(fā)展,承受的總水壓力越來越大。對于高水頭弧形鋼閘門,主框架的薄壁主梁的梁高被設計的越來越大來承受高水頭水荷載,致使其跨高比越來越小,屬于分布荷載作用下發(fā)生橫力彎曲的深梁,從而使主框架成為深梁框架,結(jié)構的空間效應十分顯著。深梁框架的強度及動力性問題是高水頭弧形鋼閘門及許多鋼結(jié)構工程設計中亟待研究和解決的重要課題,本文圍繞這兩個核心問題展開研究,針對現(xiàn)有分析的不足之處,以計算精度和計算效率為目標,改進深梁框架的強度及動力性分析,使之能適應高水頭弧形鋼閘門設計的需要,具體工作如下:(1)主框架薄壁深梁橫力彎曲強度分析研究主框架薄壁深梁橫力彎曲強度分析研究:::以高水頭弧形鋼閘門主框架的單軸對稱工字形截面薄壁深梁為研究對象,針對其橫力彎曲強度計算這一經(jīng)典力學問題進行研究,建立了薄壁深梁橫力彎曲的彎剪耦合力學模型