熱敏電阻10k熱敏電阻本身的價格并不昂貴。由于它們是離散的,因此可以通過使用額外的電路來改變其電壓降。例如,如果您使用的是非線性的NTC熱敏電阻,且希望在設備上出現線性電壓降,則可選擇添加額外的電阻器幫助實現此特性。但是,另一種可降低BOM和解決方案總成本的替代方案是使用自身提供所需壓降的線性熱敏電阻。好消息是,借助我們的新型線性熱敏電阻系列,這兩。這意味著工程師可以簡化設計、降低系統(tǒng)成本并將印刷電路板(PCB)的布局尺寸至少減少33%。
熱敏電阻10k
熱敏電阻按其在25°C時的電阻容差進行分類,但這并不能*說明它們如何隨溫度變化。您可以使用設計工具或數據表中的器件電阻與溫度(R-T)表中提供的小、典型和電阻值來計算相關的特定溫度范圍內的容差。
校準點的數量取決于所使用的熱敏電阻類型以及應用的溫度范圍。對于較窄的溫度范圍,一個校準點適用于大多數熱敏電阻。對于需要寬溫度范圍的應用,您有兩種選擇:1)使用NTC校準三次(這是由于它們在溫度下的靈敏度低且有較高電阻容差),或2)使用硅基線性熱敏電阻校準一次,其比NTC更加穩(wěn)定。
是以錳、鈷、鎳和銅等金屬氧化物為主要材料, 采用陶瓷工藝制造而成的。這些金屬氧化物材料都具有半導體性質,因為在導電方式上*類似鍺、硅等半導體材料。溫度低時,這些氧化物材料的載流子(電子和孔穴)數目少,所以其電阻值較高;隨著溫度的升高,載流子數目增加,所以電阻值降低。