SMT100 土壤溫濕度傳感器 SMT100土壤溫濕度傳感器是德國TRUEBNERS公司生產的一款低成本、高質量傳感器,其原理是利用環(huán)形振蕩器將信號的傳輸時間轉換為測量頻率,產生的頻率>100MHz足以在粘性土壤中正常工作。SMT100結合了低成本FDR傳感器的優(yōu)點和TDR傳感器的精度。與TDR一樣,它測量信號的傳播時間,以確定土壤的介電常數(shù),像FDR一樣,它把介電常數(shù)轉換成一個易于測量的頻率。提供SDI-12、RS485、0-10V和Modbus多種輸出方式,可滿足廣大客戶的需求。
土壤溫濕度傳感器應用范圍:
氣象、農業(yè)、土壤、溫室、植物秸稈水分測量、土壤侵蝕、堆肥水分測量、積雪水分溫度測量、土木綠化、多元化灌溉等領域
土壤溫濕度傳感器技術指標:
水分范圍:0-60% VWC (Max:99%VWC)
分辨率:0.1% VWC或者更高
精度:±3%VWC 工廠校準@在0-50%VWC礦物土鹽分~8ds/m
±1%VWC@土壤特定校準
溫度范圍:-40~+80℃
分辨率:0.01℃
精度:典型±0.2℃@-20~+50℃; 其它±0.4℃
介電常數(shù):1(空氣)~80(水)
分辨率:0.01
響應時間:50us
供電:4-24V DC
電流:40mA
信號輸出:數(shù)字:RS485、Modbus、SDI-12
模擬:0 - 10 V
線纜長度:10m
尺寸:18.2 cm x 3 cm x 1.2 cm
土壤溫濕度傳感器
Characteristics of the three types of soil moisture sensors used in the SOMOMOUNT network. All values in the table are provided by the manufacturers (Delta-T Devices, 2008; IMKO, 2015; Truebner, 2016).
Aragones, J. L., MacDowell, L. G., and Vega, C.: Di-electric Constant of Ices and Water: A Lesson about Water Interactions, J. Phys. Chem. A, 115, 5745–5758,
https://doi.org/10.1021/jp105975c, 2011.
Barthlott, C., Hauck, C., Schaedler, G., Kalthoff, N., and Kottmeier,C.: Soil moisture impacts on convective indices and pre- cipitation over complex terrain, Meteorol. Z., 20, 185–197,
https://doi.org/10.1127/0941-2948/2011/0216, 2011.
Beltrami, H.: Active layer distortion of annual air soil thermal orbits, Permafrost Periglac., 7, 101–110, https://doi.org/10.1002/(SICI)1099- 1530(199604)7:2<101::AID-PPP217>3.3.CO;2-3, 1996.
Beringer, J., Lynch, A. H., Chapin, F. S., Mack, M., and Bonan, G. B.: The Representation of Arctic Soils in
the Land Surface Model: The Importance of Mosses, J. Climate, 14, 3324–3335, https://doi.org/10.1175/1520- 0442(2001)014<3324:TROASI>2.0.CO;2, 2001.
Bircher, S., Skou, N., Jensen, K. H., Walker, J. P., and Rasmussen, L.: A soil moisture and temperature network for SMOS valida- tion in Western Denmark, Hydrol. Earth Syst. Sci., 16, 1445– 1463, https://doi.org/10.5194/hess-16-1445-2012, 2012.
Bogena, H. R., Herbst, M., Huisman, J. A., Rosenbaum, U., Weuthen, A., and Vereecken, H.: Potential of Wireless Sensor Networks for Measuring Soil Water Content Variability, Vadose Zone J., 9, 1002–1013, https://doi.org/10.2136/vzj2009.0173, 2010.
Bogena, H. R., Huisman, J. A., Schilling, B., Weuthen, A., and Vereecken, H.: Effective Calibration of Low-
Cost Soil Water Content Sensors, Sensors, 17, 208,
https://doi.org/10.3390/s, 2017.
Boike, J., Wille, C., and Abnizova, A.: Climatology and sum- mer energy and water balance of polygonal tundra in the Lena River Delta, Siberia, J. Geophys. Res-Biogeo., 113, G03025,
https://doi.org/10.1029/2007JG000540, 2008.
Borga, M., Boscolo, P., Zanon, F., and Sangati, M.: Hydrom- eteorological Analysis of the 29 August 2003 Flash Flood in the Eastern Italian Alps, J. Hydrometeorol., 8, 1049–1067,
https://doi.org/10.1175/JHM593.1, 2007.
Brocca, L., Morbidelli, R., Melone, F., and Moramarco, T.: Soil moisture spatial variability in experimen-
tal areas of central Italy, J. Hydrol., 333, 356–373,
https://doi.org/10.1016/j.jhydrol.2006.09.004, 2007.