主要功能
單獨(dú)或同步測(cè)量葉綠素?zé)晒夂?P700
兩個(gè)光系統(tǒng)的誘導(dǎo)動(dòng)力學(xué)曲線(包括快相和慢相)
兩個(gè)光系統(tǒng)的快速光曲線和光響應(yīng)曲線
淬滅分析、暗馳豫分析
典型的 P700 曲線測(cè)量
通過(guò)葉綠素?zé)晒夂?P700 的同步測(cè)量獲知兩個(gè)光系統(tǒng)的電子傳遞動(dòng)力學(xué)、電子載體庫(kù)的大小、圍繞 PSI 的環(huán)式電子傳遞動(dòng)力學(xué)等
測(cè)量參數(shù)
PS II參數(shù):Fo, Fm, F, Fm’, Fv/Fm, Y(II) 即 △F/Fm’, Fo’, qP, qL, qN, NPQ, Y(NPQ), Y(NO) 和 ETR(II) 等
PS I參數(shù):P700, Pm, Pm’, P700red, Y(I), Y(ND), Y(NA) 和 ETR(I) 等
其他測(cè)量參數(shù):Post-Illumination(鼓包),PQ-Pool(PQ庫(kù))等
應(yīng)用領(lǐng)域
特別適合于在野外現(xiàn)場(chǎng)進(jìn)行深入的 PSII 和 PSI 活性測(cè)量,是植物生理學(xué)、植物生態(tài)學(xué)、農(nóng)學(xué)、林學(xué)、園藝學(xué)、植物逆境研究的強(qiáng)大助手。光纖版設(shè)計(jì)更輕便,便于攜帶,另外,光纖版尤其適合附著樣品,如苔蘚,地衣的樣品的原位測(cè)量。
主要技術(shù)參數(shù)
P700 雙波長(zhǎng)測(cè)量光:LED,830 nm 和 875 nm
PSII 熒光測(cè)量光:LED,460 nm 或 620 nm
紅色光化光:LED陣列,635 nm;連續(xù)光強(qiáng) 4000 μmol m-2 s-1
藍(lán)色光化光:LED,460 nm;連續(xù)光強(qiáng) 500 μmol m-2 s-1
單周轉(zhuǎn)飽和閃光(ST):200000 μmol m-2 s-1,5~50 μs 可調(diào)
多周轉(zhuǎn)飽和閃光(MT):20000 μmol m-2 s-1,1~1000 ms 可調(diào)
遠(yuǎn)紅光:720 nm
選購(gòu)指南
一、高等植物葉片基本款
系統(tǒng)組成:光纖版主機(jī),光纖,光適應(yīng)葉夾,暗適應(yīng)葉夾,軟件等
注意:便攜式光纖型雙通道調(diào)制葉綠素?zé)晒鈨x光化光兼具紅光和藍(lán)光
Dual-PAM/F 基本款 |
二、懸浮樣品測(cè)量基本款
系統(tǒng)組成::通用型主機(jī),光纖,懸浮液測(cè)量用樣品池,軟件等。
注意:選購(gòu)懸浮樣品測(cè)量基本款時(shí)可以不選購(gòu)光適應(yīng)葉夾,建議選配磁力攪拌器。
Dual-PAM/F 懸浮樣品測(cè)量基本款 |
同步測(cè)量 PSII(紅色)和 PSI(藍(lán)色)的誘導(dǎo)曲線 | 同步測(cè)量 PSII(紅色)和 PSI(藍(lán)色)的光響應(yīng)曲線 | 典型的 P700 測(cè)量曲線 |
打開飽和脈沖時(shí)葉綠素?zé)晒庑盘?hào)(紅色)和 P700(藍(lán)色)信號(hào)變化 | 以線性時(shí)間測(cè)量的熒光快速動(dòng)力學(xué)曲線 | 以對(duì)數(shù)時(shí)間測(cè)量的熒光快速動(dòng)力學(xué)曲線 |
三、其他可選附件
1,2060-B:擬南芥葉夾,60度角光適應(yīng)葉夾,與獨(dú)立微型光量子/溫度傳感器 2060-M 連用進(jìn)行測(cè)量,特別適于測(cè)量擬南芥類小葉片。使用前提是需配置 2060-M。
2,2060-M:微型光量子/溫度傳感器,測(cè)量 PAR 和溫度,可連接 MINI-PAM 后獨(dú)立使用,多與 2060-B 結(jié)合使用。
3,MKS-2500:為 KS-2500 配置的磁力攪拌器,專為 KS-2500 配置,裝在 KS-2500 下方,帶動(dòng) KS-2500 內(nèi)部的轉(zhuǎn)子旋轉(zhuǎn),對(duì)液體樣品進(jìn)行攪拌。
4,2030-B90:90 度角光纖適配器,安裝在 2030-B 或 2060-B 上,使光纖與樣品成 90 度角。
產(chǎn)地:德國(guó)WALZ
參考文獻(xiàn)
數(shù)據(jù)來(lái)源:光合作用文獻(xiàn) Endnote 數(shù)據(jù)庫(kù),更新至 2016 年 9 月,文獻(xiàn)數(shù)量超過(guò) 6000 篇
原始數(shù)據(jù)來(lái)源:Google Scholar
Zhou, W., et al. (2016). "Effects of sodium bicarbonate concentration on growth, photosynthesis, and carbonic anhydrase activity of macroalgae Gracilariopsis lemaneiformis, Gracilaria vermiculophylla, and Gracilaria chouae (Gracilariales, Rhodophyta)." Photosynthesis Research: 1-12.
Yamori, W., et al. (2016). "A physiological role of cyclic electron transport around photosystem I in sustaining photosynthesis under fluctuating light in rice." Scientific Reports 6.
Yamamoto, H., et al. (2016). "Artificial remodelling of alternative electron flow by flavodiiron proteins in Arabidopsis." Nature Plants 2: 16012.
Wang, H., et al. (2016). "The sporulation of the green alga Ulva prolifera is controlled by changes in photosynthetic electron transport chain." Scientific Reports 6: 24923.
Xue, X., et al. (2016). "Development of the photosynthetic apparatus of Cunninghamia lanceolata in light and darkness." New Phytologist: n/a-n/a.
Shimakawa, G., et al. (2016). "Diversity in photosynthetic electron transport under [CO2]-limitation: the cyanobacterium Synechococcus sp. PCC 7002 and green alga Chlamydomonas reinhardtii drive an O2-dependent alternative electron flow and non-photochemical quenching of chlorophyll fluorescence during CO2-limited photosynthesis." Photosynthesis Research: 1-13.
Tadini, L., et al. (2016). "GUN1 controls accumulation of the plastid ribosomal protein S1 at the protein level and interacts with proteins involved in plastid protein homeostasis." Plant Physiology: pp. 02033.02015.
Takagi, D., et al. (2016). "Photorespiration provides the chance of cyclic electron flow to operate for the redox-regulation of P700 in photosynthetic electron transport system of sunflower leaves." Photosynthesis Research: 1-12.
Leonelli, L., et al. (2016). "Transient expression in Nicotiana benthamiana for rapid functional analysis of genes involved in non-photochemical quenching and carotenoid biosynthesis." The Plant Journal: n/a-n/a.
Meneghesso, A., et al. (2016). "Photoacclimation of photosynthesis in the Eustigmatophycean Nannochloropsis gaditana." Photosynthesis Research: 1-15.
Huang, W., et al. (2016). "PSI photoinhibition is more related to electron transfer from PSII to PSI rather than PSI redox state in Psychotria rubra." Photosynthesis Research: 1-8.
Mishanin, V. I., et al. (2016). "Light acclimation of shade-tolerant and light-resistant Tradescantia species: induction of chlorophyll a fluorescence and P700 photooxidation, expression of PsbS and Lhcb1 proteins." Photosynthesis Research.
Benson, S. L., et al. (2015). "An intact light harvesting complex I antenna system is required for complete state transitions in Arabidopsis." Nature Plants 1: 15176.
Gao, F., et al. (2015). "NdhV Is a Subunit of NADPH Dehydrogenase Essential for Cyclic Electron Transport in Synechocystis sp. Strain PCC 6803." Plant Physiology: pp. 01430.02015.
Gerotto, C., et al. (2015). "In Vivo Identification of Photosystem II Light Harvesting Complexes Interacting with PHOTOSYSTEM II SUBUNIT S." Plant Physiology 168(4): 1747-1761.
Giovagnetti, V., et al. (2015). "Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana." Photosynthesis Research: 1-11.
Iwai, M., et al. (2015). "Light-harvesting complex Lhcb9 confers a green alga-type photosystem I supercomplex to the moss Physcomitrella patens." Nature Plants 1(2).
Timm, S., et al. (2015). "Mitochondrial Dihydrolipoyl Dehydrogenase Activity Shapes Photosynthesis and Photorespiration of Arabidopsis thaliana." The Plant Cell: tpc. 15.00105.
Tsabari, O., et al. (2015). "Differential effects of ambient or diminished CO2 and O2 levels on thylakoid membrane structure in light‐stressed plants." The Plant Journal 81(6): 884-894.
Zhao, J., et al. (2015). "NdhQ Is Required to Stabilize the Large Complex of NADPH Dehydrogenase in Synechocystis sp. Strain PCC 6803." Plant Physiology: pp. 00503.02015.
Zivcak, M., et al. (2015). "Repetitive light pulse-induced photoinhibition of photosystem I severely affects CO2 assimilation and photoprotection in wheat leaves." Photosynthesis Research: 1-15.