小型屠宰污水處理設(shè)備廠家厭氧生物處理作為利用厭氧性微生物的代謝特性,在毋需提供外源能量的條件下,以被還原有機物作為受氫體,同時產(chǎn)生有能源價值的甲烷氣體。厭氧生物處理法不僅適用于高濃度有機廢水,進水BODzui高濃度可達數(shù)萬mg/l,也可適用于低濃度有機廢水,如城市污水等。
厭氧生物處理過程能耗低;有機容積負荷高,一般為5-10kgCOD/m3.d,zui高的可達30-50kgCOD/m3.d;剩余污泥量少;厭氧菌對營養(yǎng)需求低、耐毒性強、可降解的有機物分子量高;耐沖擊負荷能力強;產(chǎn)出的沼氣是一種清潔能源。
1、具有很高的容積負荷率UASB厭氧反應(yīng)器|IC厭氧設(shè)備
IC厭氧反應(yīng)器由于存在著強大的內(nèi)循環(huán)、傳質(zhì)效果好、生物量大。其進水負荷率遠比普通的UASB反應(yīng)器高,一般可高出3倍左右。處理高濃度有機廢水,當(dāng)COD為10000-150000mg/1時,容積負荷率可達15-30kgCOD/m3。
2、小型屠宰污水處理設(shè)備廠家抗沖擊負荷能力強
由于IC反應(yīng)器實現(xiàn)了自身的內(nèi)循環(huán),循環(huán)量可達進水的10-20倍。因為循環(huán)水與進水在反應(yīng)器底部充分混合,使反應(yīng)器底部的有機物濃度降低,從而提高了反應(yīng)器的耐沖擊負荷能力;同時大水量也使底部污泥得以膨脹,保證了廢水中的有機物與微生物的充分接觸反應(yīng),提高了處理負荷。
3、出水穩(wěn)定性能好污水達標(biāo)排放設(shè)備 廢水處理達標(biāo)排放系統(tǒng)小型屠宰污水處理設(shè)備
因為IC反應(yīng)器相當(dāng)上下兩個UASB反應(yīng)器的串行運行,下面一個反應(yīng)器具有很高的有機負荷率,起“粗”處理作用,上面一個反應(yīng)器的負荷低,起“精”處理作用,使出水水質(zhì)好且穩(wěn)定。
在全社會提倡循環(huán)經(jīng)濟,關(guān)注工業(yè)廢棄物實施資源化再生利用的今天,厭氧生物處理顯然是能夠使污水資源化的優(yōu)選工藝。近年來,污水厭氧處理工藝發(fā)展十分迅速,各種新工藝、新方法不斷出現(xiàn),包括有厭氧接觸法、升流式厭氧污泥床、檔板式厭氧法、厭氧生物濾池、厭氧膨脹床和流化床,以及第三代厭氧工藝EGSB和IC厭氧反應(yīng)器,發(fā)展十分迅速。
而升流式厭氧污泥床UASB( Up-flow Anaerobic Sludge Bed,注:以下簡稱UASB)工藝由于具有厭氧過濾及厭氧活性污泥法的雙重特點,作為能夠?qū)⑽鬯械奈廴疚镛D(zhuǎn)化成再生清潔能源——沼氣的一項技術(shù)。對于不同含固量污水的適應(yīng)性也強,且其結(jié)構(gòu)、運行操作維護管理相對簡單,造價也相對較低,技術(shù)已經(jīng)成熟,正日益受到污水處理業(yè)界的重視,得到廣泛的歡迎和應(yīng)用。
本文試圖就UASB的運行機理和工藝特征以及UASB的設(shè)計啟動等方面作一簡要闡述。
二、UASB的由來
1971年荷蘭瓦格寧根(Wageningen)農(nóng)業(yè)大學(xué)拉丁格(Lettinga)教授通過物理結(jié)構(gòu)設(shè)計,利用重力場對不同密度物質(zhì)作用的差異,發(fā)明了三相分離器。使活性污泥停留時間與廢水停留時間分離,形成了上流式厭氧污泥床(UASB)反應(yīng)器的雛型。1974年荷蘭CSM公司在其6m3反應(yīng)器處理甜菜制糖廢水時,發(fā)現(xiàn)了活性污泥自身固定化機制形成的生物聚體結(jié)構(gòu),即顆粒污泥(granular sludge)。顆粒污泥的出現(xiàn),不僅促進了以UASB為代表的第二代厭氧反應(yīng)器的應(yīng)用和發(fā)展,而且還為第三代厭氧反應(yīng)器的誕生奠定了基礎(chǔ)。
三、UASB工作原理 小型屠宰污水處理設(shè)備
UASB由污泥反應(yīng)區(qū)、氣液固三相分離器(包括沉淀區(qū))和氣室三部分組成。在底部反應(yīng)區(qū)內(nèi)存留大量厭氧污泥,具有良好的沉淀性能和凝聚性能的污泥在下部形成污泥層。要處理的污水從厭氧污泥床底部流入與污泥層中污泥進行混合接觸,污泥中的微生物分解污水中的有機物,把它轉(zhuǎn)化為沼氣。沼氣以微小氣泡形式不斷放出,微小氣泡在上升過程中,不斷合并,逐漸形成較大的氣泡,在污泥床上部由于沼氣的攪動形成一個污泥濃度較稀薄的污泥和水一起上升進入三相分離器,沼氣碰到分離器下部的反射板時,折向反射板的四周,然后穿過水層進入氣室,集中在氣室沼氣,用導(dǎo)管導(dǎo)出,固液混合液經(jīng)過反射進入三相分離器的沉淀區(qū),污水中的污泥發(fā)生絮凝,顆粒逐漸增大,并在重力作用下沉降。沉淀至斜壁上的污泥沼著斜壁滑回厭氧反應(yīng)區(qū)內(nèi),使反應(yīng)區(qū)內(nèi)積累大量的污泥,與污泥分離后的處理出水從沉淀區(qū)溢流堰上部溢出,然后排出污泥床。
基本出要求有:
(1)為污泥絮凝提供有利的物理、化學(xué)和力學(xué)條件,使厭氧污泥獲得并保持良好的沉淀性能;
(2)良好的污泥床??尚纬梢环N相當(dāng)穩(wěn)定的生物相,保持特定的微生態(tài)環(huán)境,能抵抗較強的擾動力,較大的絮體具有良好的沉淀性能,從而提高設(shè)備內(nèi)的污泥濃度;
(3)通過在污泥床設(shè)備內(nèi)設(shè)置一個沉淀區(qū),使污泥細顆粒在沉淀區(qū)的污泥層內(nèi)進一步絮凝和沉淀,然后回流入污泥床內(nèi)。
四、UASB內(nèi)的流態(tài)和污泥分布
UASB內(nèi)的流態(tài)相當(dāng)復(fù)雜,反應(yīng)區(qū)內(nèi)的流態(tài)與產(chǎn)氣量和反應(yīng)區(qū)高度相關(guān),一般來說,反應(yīng)區(qū)下部污泥層內(nèi),由于產(chǎn)氣的結(jié)果,部分?jǐn)嗝嫱ㄟ^的氣量較多,形成一股上升的氣流,帶動部分混合液(指污泥與水)作向上運動。與此同時,這股氣、水流周圍的介質(zhì)則向下運動,造成逆向混合,這種流態(tài)造成水的短流。在遠離這股上升氣、水流的地方容易形成死角。在這些死角處也具有一定的產(chǎn)氣量,形成污泥和水的緩慢而微弱的混合,所以說在污泥層內(nèi)形成不同程度的混合區(qū),這些混合區(qū)的大小與短流程度有關(guān)。懸浮層內(nèi)混合液,由于氣體幣的運動帶動液體以較高速度上升和下降,形成較強的混合。在產(chǎn)氣量較少的情況下,有時污泥層與懸浮層有明顯的界線,而在產(chǎn)氣量較多的情況下,這個界面不明顯。有關(guān)試驗表明,在沉淀區(qū)內(nèi)水流呈推流式,但沉淀區(qū)仍然還有死區(qū)和混合區(qū)。 UASB厭氧反應(yīng)器|IC厭氧設(shè)備污水達標(biāo)排放設(shè)備 廢水處理達標(biāo)排放系統(tǒng)
UASB內(nèi)污泥濃度與設(shè)備的有機負荷率有關(guān)。是處理制糖廢水試驗時,UASB內(nèi)污泥分布與負荷的關(guān)系。從圖中可看出污泥層污泥濃度比懸浮層污泥濃度高,懸浮層的上下部分污泥濃度差較小,說明接近*混合型流態(tài),反應(yīng)區(qū)內(nèi)污泥的頒,當(dāng)有機負荷很高時污泥層和懸浮層分界不明顯。試驗表明,污水通過底部0.4-0.6m的高度,已有90%的有機物被轉(zhuǎn)化。由此可見厭氧污泥具有*的活性,改變了*以來認為厭氧處理過程進行緩慢的概念。在厭氧污泥中,積累有大量高活性的厭氧污泥是這種設(shè)備具有巨大處理能力的主要原因,而這又歸于污泥具有良好的沉淀性能。
UASB具有高的容積有機負荷率,其主要原因是設(shè)備內(nèi),特別是污泥層內(nèi)保有大量的厭氧污泥。工藝的穩(wěn)定性和高效性很大程度上取決于生成具有優(yōu)良沉降性能和很高甲烷活性的污泥,尤其是顆粒狀污泥。與此相反,如果反應(yīng)區(qū)內(nèi)的污泥以松散的絮凝狀體存在,往往出現(xiàn)污泥上浮流失,使UASB不能在較高的負荷下穩(wěn)定運行。